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Abstract—The 3-input gates have been interesting logical
components for synthesis due to the circuit minimization. More-
over, the emerging Field-Coupled Nanotechnologies (FCNs) easily
handle these circuits. There are 256 possible configurations for
the entry set of 3-input designs, which we can group in 14
Negation-Permutation-Negation (NPN). In this scenario, AND,
ORAND, and Majority are spare gates for circuit design. In this
paper, we exploit the occurrence of these gates in real circuits.
Our results indicate that the logical ORAND is the most adopted
one due to its better coverage. This gate also can synthesize other
NPN classes with fewer gates than the widely-adopted AND.

I. INTRODUCTION

Heuristic approaches are widely adopted to solve the
complex and challenging computational task that is circuit
optimization [1]. In this scenario, replacing 2-input for 3-
input gates has become an additional strategy for area re-
duction, which leads to improvement in energy costs and
heat dissipation. Moreover, the emerging Field-Coupled Nan-
otechnologies (FCNs) [2] have become an alternative due
to their prominent simulated implementations of 3-input
circuits [3]–[5], ensuring the possibility of future physi-
cal designs. The most important FCNs technologies are:
Nanomagnetic Logic (NML) [6]–[9], Quantum-dot Cellular
Automata (QCA) [10], [11], and Atomic Silicon Quantum
Dot (SQD) [3], [12]–[14].

Marakkalage et al. [1] investigate the trade-offs in terms of
energy and area for the 3-input gates. In more detail, this work
exploits the 256 possibilities of outputs for them. It is possible
to group these configurations in 14 Negation-Permutation-
Negation (NPN), where two classes use, at most, two inputs.
Hence, there are ten NPN gates to classify all existing 3-
input configurations. In this scenario, the NPN classification
is a well-solved problem. The related works explore heuristic
methods such as hierarchical classifications [15], function
polarization analysis [16], AIG structures [17], [18], analyzing
variables symmetry [19], one pre-computed library created
from LUT’s topology analysis [20].

Marakkalage et al. [1] show the 3-input NPN classes, where
some of them can minimize the average number of gates
to produce the other NPN classes. Consequently, the use of
these designs results in improvements in area and energy
costs. In this paper, we explore the occurrence of these gates
in real circuits. First, we use the ABC [21] to obtain the
hardware descriptions for circuits composed of gates with at
most 3 inputs for the well-known ISCAS89 [22] benchmarks.

Next, we use this software to obtain the truth tables for all
Boolean expressions from these given designs. Then, we use
our hardware-based NPN classifier to match these truth tables
with 3-input NPN classes. Finally, we produce a detailed
summary containing the number of gates from each NPN class
that compose the benchmarks. Our main contributions are: (1)
the gate occurrence summary and (2) a hardware-based NPN
classifier for 3-input gates.

We organize this paper as follows. In Section II we describe
prior approaches for similar combinatorial problems. In Sec-
tion III, we depict the theoretical basis of the NPN classes
and also show an SQD-based 3-input gate. In Section IV,
we present our approach to summarize gate occurrence and
also propose our hardware accelerator approach for NPN
classifying. Section V shows the gate occurrence summary,
the number of gates from each NPN class to generate the
ISCAS89 [22] benchmarks, and compares the execution times
between our NPN classifier and prior works. In Section V we
conclude and present our future work.

II. RELATED WORK

This section presents widely-known solutions for our target
problem once the NPN classification is a well-solved problem.
Z. Huang et al. [16] use a heuristic based on a three-step
algorithm for a 6-16 input Boolean function, where the output
depends only on the number of true inputs. On the other hand,
Benini et al. [23] present a BDD-based approach. Another
widely-adopted approach is the class hierarchy to pre-classify
utilizing a heuristic approach saving intermediate results (i.e.,
the truth tables) [15]. This early step reduces the execution
times due to the possibility of sopping the execution when the
function becomes equal to a hierarchy representative.

Soeken et al. [18] propose an algorithm for NPN classifica-
tion using AIGs (and inverter graph) and LEXSAT (a variant
of SAT problem). This approach uses AIGs composed of 2-
input AND gates to represent the Boolean functions, which
are compared by the LEXSAT. The AIG structures also could
classify Boolean functions for a solution based on the Galois
graph for the topology representation [24]. The pre-computed
libraries of implementable NPN equivalent functions could
support this purpose [20].



III. BACKGROUND

This section describes NPN classes and their classifications.
It also discusses the importance of using them in discovering
new gates, and why it is crucial to classify one gate for circuit
design. The NPN class consists of a group of logic gates that
can be obtained from others negating or permuting the inputs
of an initial gate or negating the output. We cover two different
methods of performing the classification of these gates. Each
class has a unique configuration, which also depends on the
size of gate inputs. There are 22

n

possibilities of output for a
gate with size n for the entry set.

TABLE I
NPN CLASSES FOR 3-INPUT GATES [1]

Gate Logical Expression
And3 x ∧ y ∧ z

XorAnd x ∧ (y ⊕ z)
OrAnd x ∧ (y ∨ z)
Onehot x¬y¬z ⊕ ¬xy¬z ⊕ ¬x¬yz

Majority < xyz >
Gamble x ∧ y ∧ z ⊕ ¬x ∧ ¬y ∧ ¬z

Dot x⊕ (z ∨ x ∧ y)
Mux x?y : z

AndXor x⊕ y ∧ z
Xor3 x⊕ y ⊕ z

Marakkalage et al. [1] exploit the 3-input NPN classes.
Each gate group has 256 possible output configurations. It
means 256 boolean functions that could be grouped in 14 NPN
classes, where four of them need at most two inputs, resulting
in ten 3-input NPN classes, shown in Table I. Figure 1 shows
designs from a same 3-input NPN class. In other words,
Figure 1(a), Figure 1(b), Figure 1(c), and Figure 1(d) are
NPN equivalent, which means could be obtained from each
other through complements and permutations. In this context,
Figure 1 shows the original gate (a) and examples of modified
versions from the same NPN-classes that we can obtain from
3 kinds of changes: (b) inputs permutation, (c) the use of input
complement, and (d) the use of output complement.

Fig. 1. Configurations from a same NPN class. (a) Original AND gate. (b)
inputs permutation. (c) input A complement. (d) output complement.

In this context, Table II shows the 3-input gate count for
synthesize the NPN classes with 3, 4, and 5 inputs [1]. These
values show that the designs with fewer gates can be produced
with the gates from the ORAND class, considering any of
these input counts. Therefore, 3-input designs from this NPN
class are standout gates for circuit reduction, once it could
reduce the gate count, and consequently both area and energy.

As above-mentioned, the FCNs have prominent implemen-
tations of 3-input gates [4], [25].

TABLE II
3-INPUT GATES COUNT TO SYNTHESIZE ALL X-INPUT NPN CLASSES [1]

X AND Majority ORAND
3 33 30 25
4 1134 1036 883
5 1664 1612 1302

These technologies overcome the physical limits of the
current CMOS, allowing the production of high-performance,
low-power computing devices. Furthermore, FCNs could also
integrate circuits as extensions of existing CMOS designs.
FCN uses nanomagnetic interactions (NML) or Coulombic
interactions between electrons (QCA and SQD) to represent
the logic levels.

The emerging SQD has become a relevant alternative in this
scenario due to the sturdy physical synthesis and ease of 3-
input gates simulation. Vieira et al. [3] present the novel SQD-
based ANDOR and ORAND gates. Both are correspondent
to a NPN class. Figure 2 depicts these designs that are com-
posed of the emerging Silicon-Dangling-Bound. This structure
originates from the desorption of single hydrogen atoms on a
Silicon surface.

Fig. 2. SQD-based 3-input gates. (a) ORAND. (b) ANDOR.

IV. METHODOLOGY

This section depicts our main contributions. Section IV-A
presents our workflow to produce the gate occurrence sum-
mary. Section IV-B shows our hardware-based approach to
classify 3-input gates into the main NPN classes. We focus on
the report on the importance of some spare 3-input gates to
synthesize real circuits. Therefore, we only produce an NPN
classifier as an auxiliary tool with a reasonable execution time,
which does not need to be competitive.

A. Our workflow: Gate occurrence analysis

The choice of gates to compose circuits has a significant
impact on circuit minimization. Following this statement, this
work exploits the 3-input gates to find one that can reduce
the total area cost. We evaluate three widely-adopted gates for
circuit design: AND, Majority, and ORAND. Another advan-
tage of this choice consists in the possibility to implement
these gates in FCNs (Field Coupled Nanotechnologies) [4]
such as SQD (Silicon Quantum Dot) and QCA (Quantum-dot
Cellular Automata). We use the ISCAS89 benchmarks [22] as
an example of real circuits.

Figure 3 depicts the workflow for gate analysis, starting
from the bench file to the exact classification of the NPN class.



Fig. 3. Workflow: gate occurrence analysis.

We use the well-established tool for sequential synthesis and
verification, named ABC [21], to generate circuits composed
by gates with at most three inputs. First, we read the bench file
which contains one hardware description from the ISCAS89
benchmarks [22], using the command read verilog bench-
file.v. Then, we execute the command resyn2 which synthe-
sizes using combinational logic, generating a new Verilog file.
Next, we use the command if -K 3 to decompose the circuit
into a 3-LUT, in other words, it transforms the circuit into
3-input functions. To finish the ABC usage step, we execute
the command write blif filename.blif for create a new .blif
file that contains the transformed circuit.

The last two steps are our main contributions: classifying
gates into NPN classes and produce the gate occurrence
summary. The first one is a high-level-based algorithm to
extract truth tables from the blif file given by ABC. In
this step, we do not consider the truth tables with 1-input
(inverters) and the 2-input. Therefore, we only classify in NPN
classes the remaining designs with three literal inputs, thus not
considering gates with constant inputs. Finally, we match these
3-input truth tables with the NPN classes. Then, we could
report the incidence for each class in benchmarks.

B. Our hardware-based NPN classifier

We develop a hardware-based approach to classify gates
into NPN classes. In a preprocessing step, we define one
logical expression to represent each gate group, according
to Figure I. Then, our algorithm obtains all combinations of
inputs and outputs for each NPN class, using permutations
and the addition of inverters. Since we receive a logical entry
statement at run-time, we must match it with an NPN class.
Notice that permuting entries or adding inverters in a prior
gate produces changes in the expected output. For instance,
Figure 4 depicts the permutation of X to Y for a 2-input
configuration. This operation induces the change between the
second and third lines from the truth table, generating a new
output.

V. RESULTS

We organize this section as follows. Section V-A presents
our summary for 3-input gate occurrence, evaluating the
coverage of AND, ORAND, and Majority. Section V-B shows
our analysis above the related work.

A. Summary: gate occurrence (And, Orand, Majority)

Table III shows the gate occurrence for all 3-input NPN
classes, using circuits from well-known benchmarks IS-
CAS89 [22]. It is important to emphasize that gates such

x y out y x out

0 0 0 0 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 1 1 1 1 1

(a) Original configuration (b) Configuration after x to y permutation

Fig. 4. High-level code: X to Y permutation

TABLE III
GATE OCCURRENCE

Gates s838 s1196 s1423 s5378 s9234 Total
And 46 69 26 117 111 369

Xorand 0 3 43 12 52 110
Orand 33 109 63 176 219 600
Onehot 0 0 0 0 0 0

Majority 0 0 0 0 0 0
Gamble 0 0 0 0 0 0

Dot 0 2 0 0 0 2
Mux 1 9 23 4 69 106

Andxor 11 0 1 8 9 29
Xor 0 0 0 28 8 36

Gates s13207 s15850 s35932 s38417 s38584 Total
And 192 227 16 481 1048 1964

Xorand 87 103 544 209 180 1123
Orand 227 285 1120 942 1171 3745
Onehot 0 1 0 0 0 1

Majority 0 0 0 0 0 0
Gamble 0 1 0 12 0 13

Dot 7 5 0 10 85 107
Mux 139 247 16 961 1144 2507

Andxor 18 22 16 37 92 185
Xor 5 14 288 16 6 329

as XOR, which are widely used in adder circuits, have a
significant presence in the analyzed circuits for this reason.
Otherwise, gates like Majority, Onehot, and Gamble are con-
siderably rare. Marakkalage et al. [1] show that the ORAND
NPN Class appears more frequently than the Majority and
And3 NPN Classes. Our results complement this information,
proving that this NPN group is the most frequent in these
benchmarks. Furthermore, we notice that the AND is in the
top 3 most frequent for several benchmarks, as expected as
the synthesis algorithm targets AIGs.

Table IV presents the total number of 3-input gates, con-
sidering that we only use one NPN class to compose the
ISCAS89 [22] circuits. Marakkalage et al. [1] present the
number of gates from each NPN class to synthesize the
other classes. Therefore, we only multiply these numbers from
the related work by the gate count per benchmark given
by Table III. The Majority gate frequently appears as the
NPN class that uses fewer gates to compose the benchmarks,
followed by ORAND, at second position.

B. Comparisons with Related Work

The NPN classification is already a well-explored problem
in the literature. Therefore, there are many widely adopted



TABLE IV
3-INPUT AND, ORAND, AND MAJORITY: GATE COUNT FOR ISCAS89

Bench s838 s1196 s1423 s5378 s9234
AND 252 586 532 1119 1531

ORAND 182 388 398 770 1056
Majority 182 381 269 678 884
Bench s13207 s15850 s35932 s38417 s38584
AND 2223 3059 7392 9138 12251

ORAND 1527 2041 5664 5788 7739
Majority 1263 1708 3456 5139 7272

methods. Even so, our approach achieves a satisfactory average
result regarding our need for only 3-input gates and ignoring
scalability.

TABLE V
EXECUTION TIMES IN MILLISECONDS FOR NPN-CLASSIFIERS

[20] [16] [15] [18] [19] our
Time 300 5180 2690 5650 60 6500
Inputs 3 6 6 6 6 3

VI. CONCLUSIONS AND FUTURE WORK

We exploit the occurrence of gates from all 3-input NPN
classes in real circuits, using the well-known benchmarks
ISCAS89 [22]. Our results show that the ORAND is the
most incident gate for these benchmarks. Furthermore, we
could produce these real circuits only using the ORAND gate
with costs that are competitive with the widely-adopted AND.
Furthermore, the related work shows that the ORAND also
compose NPN classes with 3, 4, 5, and 6 inputs with fewer
gates than AND and Majority. Also, a prior work presents an
FCN-based implementation of the logical ORAND using the
emerging SQD technology.

We aim to adjust our NPN classifier also to match 2-input
gates with the 3-input NPN classes. Furthermore, we will
investigate the profitability of the most prominent 3-input gates
for a specific target technology such as FCNs. We also aim to
improve the execution times of our NPN classifier to exploit
circuit classes with 4 or more inputs.
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